Constraints of two-colour TiRe-LII at elevated pressures

TitleConstraints of two-colour TiRe-LII at elevated pressures
Publication TypeJournal Article
Year of Publication2011
AuthorsCharwath, M, Suntz, R, Bockhorn, H
Journal TitleApplied Physics B: Lasers and Optics
Keywordselevated pressure; LII; time-resolved LII; two-colour LII

The main objective of this work is to investigate the influence of high-pressure conditions on the determination of primary particle size distributions of laser-heated soot particles using pyrometrically determined temperature decays. The method is based on time-resolved laser-induced incandescence measurements carried out at two different wavelengths (two-colour TiRe-LII). The LII signals are transferred into a particle ensemble averaged (effective) temperature using Planck’s thermal radiation formula. Assuming that all particles within the size distribution possess a unique temperature at the end of the laser pulse, the size distribution can be determined by numerically simulating the measured temperature decay. From our investigations, for pressures up to a few bars it is obvious that this strategy can be successfully applied if standard laser pulses of nano-second duration are used as an LII-excitation source. At higher pressures the time scales of heat conduction are decreased to such an extent that a unique temperature for all particles within the ensemble cannot be assumed at the end of the nano-second laser pulse. However, further investigations show that the presented two-colour TiRe-LII technique can be successfully adopted under technical high-pressure conditions as well, if the pulse duration of the TiRe-LII-excitation source is reduced into the pico-second range.